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Abstract. 'Two different origins of statistical errors in multifractal analysis by the box 
algorithm are investigated. We propose a modified box algorithm reducing the statistical 
errors and allowing a more accurate estimation of the region where power law scaling i s  
Oresent. 

1. Introduction 

Strange attractors play an important role in investigations of chaotic motion. Their 
geometrical properties which are related to the dynamics of the described system [I-31 
are characterized by their f(a)-spectrum which is obtained from a spectrum of 
exponents, the Rinyi-dimensions D, ( q  ER) [ I ,  41. 

The D, are usually measured by scanning a finite time series. The question of how 
to extract as much information about the Rinyi dimensions as possible from the data 
set leads to the problem of the precision of measured 0,. Holzfuss and Mayer-Kress 
[SI, who introduced an error estimation for the measurement of some exponents from 
time series, demonstrated that existing errors are usually underestimated. Here we will 
give an alternative procedure to estimate the errors and give expressions for the 
fluctuations. 

The paper is organized as follows. In section 2 we give a short introduction to the 
partition function formalism and the box counting algorithm. In sections 3 and 4 the 
fluctuations in the box algorithm due to the finite length of time series are investigated 
for positive and negative q respectively. In section 5 the box algorithm is tested at a 
sample multifractal, the generalized Baker's map, and it is shown that the algorithm 
itself causes additional fluctuations. In section 6 a modified algorithm is introduced 
which reduces those additional fluctuations and allows a more precise estimation of 
the D,. 

2. The box algorithm 

On an attractor A a measure p is given by the point-density (of an infinitely long time 
series) which should he normalized, so that 

A A )  = 1 (1) 
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holds. The attractor in the box algorithm is covered by not more than countable many 
disjoint sets s, with radius /, < I  and the partition function is defined as 

(2) 
r ( q . ~ , i , { w = x ~  P :  

f& =LA dP 

I ,  

with 

DaO. 

The optimization over all possible coverings leads to 

for 9 < 1. If we consider the limit of small diameters ( 1 -  0 )  we get 

r (q ,D)=l imT(q ,  1-0 D, / ) .  ( 5 )  

The RCnyi dimension of degree q is then defined as 

i f q > l a n d  

D,= sup D 
L'(q,D)=O 

(7) 

if 9 < 1. A detailed description of the partition function formalism can be found in [6,7]. 
Using the box algorithm, the attractor is covered by a grid of boxes b,, i = 1.2 , .  . . , 

of size S. The moments x4 of the probability distribution pa  are defined as 

, p : = x p ;  (8) 

where pt is p ,  = p ( A  n b , ) .  The x q  depend on S and the D, are 

1 alogxq(S) D,:= lim- 
a - o q - 1  alog S 

for q # 1 and [XI 
D ,  = lim 0,. 

q- 1 

The box size S here plays the role of arguments I and If of the partition function. 
Instead of the optimization (3) and (4) the box algorithm requires a cover of equal-sized 
boxes with a fixed place in the used lattice. The moments x q ( S )  then in some way are 
approximations of r(q, D, / =  8 )  

To evaluate the Rinyi dimensions by the box algorithm the used time series should 
be long enough that first it reaches every part of the attractor and second the correlation 
between the points becomes negligible and their positions are governed just by the 
attractor's point density. Then the measuring can be regarded as a random experiment 

8'q-"". 
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and the probability that the ith box contains k; = k points out of a time series of n 
points is 

This leads, if one regards the contents of the boxes as independent, to the expectation 
value of x' 

To regard the contents of the boxes as independent means that each box is filled by 
its own time series of n points or, in other words, the constraint X; k. = n does not 
hold and n is not a constant, but a random variable whose expectation is the number 
of points in the time series and whose standard deviation is J n ( l - X p f ) ,  so that 
the relative width of its distribution becomes small for large n. Under these conditions 
(12) will be a good approximation for the values of the moments. 

To measure the D,, the ~ ~ ( 6 )  are evaluated for different S(S = S,, S 2 ,  . . . , &). A 
least-squares fit is used to draw a straight line through the points (log Si, log x 9 ( 4 ) ) ,  
i =  1,. . . , N, whose slope is (4- l ) D q .  Here we assume that x q ( S )  can be described 

has to be detected very carefully. 

leads to a slope S of 

h., --..,e- lo.., ,.,h:.-h "+ :- F. . l f l l a ,4  Fnr Go:+- ~ -F P TI.:" ~ - F  S 
" J  (1 p , " C .  l a w  wlllrl l  (1I IL(..,L 17, l"lllllr" 1Y1 (1 ,I,,,,= LLL"6,' "L "_ 111.a L L L L L ~ C  "1 "-"aLI"CI 

A least-squares fit of a straight line through a set of points ( x i ,  y j ) ,  i = 1, . . . , N, 

In our case we assume that the x, are exact and thus we can write for the error of S 

So we can determine ( q  - 1)D9 by equation (13) and, if we know the A y j ,  the correspond- 
ing errors. For analytic expressions of the errors made in this measurements see the 
foiiowing section. 

3. Positive values of q 

To extract the expectation values of the moments ( x : )  scanning a time series of length 
n we define the quantity 

m:(p) :=  f (l) p * ( l  -p)"-'kq. 
k = ,  

The expectation values of the moments are then given by 

The (xz) are continuous and monotonic functions of q. It can be easily seen that 
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and from m".p) = 1 - ( 1  - p ) "  one obtains 

m ! S p )  = np (18) 

" , ( p )  = ( n 2 - n ) p 2 +  np (19) 

m i ( p )  = ( n 3 - 3 n 2 + 2 n ) p 3 + ( 3 n 2 - 3 n ) p 2 +  np (20) 

m * , ( p )  = ( n 4 - 6 n ' +  11nZ-6n)p4+(6n3-18n2+ 12n)p3+(7n2-7n)p'+np (21) 

(,y:)=x [ 1 - ( 1  - P o " ]  

The expectation values of the corresponding moments are given by 

= x o - g l  - P i ) "  

=,yo+ c: 

3 2  3 3  

=(1-:+$)x3+c: 

6 11 6 6 18 12 7 7  

=(l-:+$-s)x*+c: .. .. .. 

... 
with 

c: = -1 ( 1 - P o "  

(24) 

1 C ' . = -  
n 

," - \  . '6 i 8  ii' 1 

The constant prefactor before the terms xq in the expressions for the expectation values 
(22-25) will disappear in the logarithmic derivation, but the C: are corrections and n 
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must be chosen large enough so that they become sufficiently small. The variance and 
the standard deviation are given by 

* ~ x q  = J& 7 m?q( pi) - (m: ( pi ))'I (26 )  

which are continuous functions of q which can be interpolated between the integer 
values of q. Note that the boxes are independent in this counting. For q = 0 and q = 2 
rc!a!iax (26) gives 

and 

respectively. For sufficiently large n in (28) the term X p:(4/n) dominates in the square 
root and the error of x z  shows a behaviour which corresponds to a similar result 
of Theiler [9] who found the same behaviour in the correlation algorithm. 

4. Negative values of q 

To get the expectation values of the moments for negative q one has to integrate (17). 
This yields 

which is for q = - 1  

Using 

1 1 
-= ( 1  -p)"-(1 -p)-" 
P P 

and choosing po=f ,  since we then can evaluate the integration constant 
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we can write 

(33) 
1 -P+ 1 

P (1-p)p2n2'  
s ( 1 - p ) " l o g -  

To obtain the variance of x-' we have to evaluate m i 2  (compare equation (26)) 
which is by (29) 

1 

(34) 
m:'(p0) 1 + ,. >"+,. -%"+,- dp+mi2(po). 

1 ds  

n(l-pjp J p 0 S 2 ( i - S J . .  ( I - P J  ~ P J  

We use 

(35) 
n 1 

d p + T  
1 

P I Po 
7= (1 -p)" 

and set po = po = i; we then can evaluate the integration constant to 

(36) 
4 16 

m . ( p o ) = m i 2 ( f ) - ; ; i = ; ; j  

and obtain 

=5 (1 - p ) "  (log-+&) ++( 1-1) +?, 
P n P  " P  n n 

(37) 

The variance of x-' is now 

A'(x-')= n 2 E  [ m ~ 2 ( ~ j ) - ( m i ' ( ~ j ) ) 2 1  
i 

+ ( -pi)2n ,og2 I-pi 

"' . '-1 ' 
Pi 

2(! -pj)"-'!O&(l - O : ) / D ; 1 1  (3%) ! 
2 4 a +  p$2 

+ 
(1  -Pi) pin 

This is only a very rough estimation of an upper limit and surely a better approximation 
can be found. 
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5. The generalized Baker's map 

The generalized Baker's map was introduced in [7] as an analytically treatable but 
nontrivial sample for a multifractal. It is defined by 

Y .  < a  

I + ~ d r .  Y .  > a 

Y.  < a  
( l / ( l -a))(yn - a )  Y.  > a 

& + I =  , rxn 
Yn+, = p Y "  

x. E [O, 11 Y .  E [O, 11. 
In [7] an expression for the f(a)-spectrum of its attractor is given by: 

(39) 

log a -(a - 1) log A. 

(a - 1 )  ~ o g ( ~ b / ~ , ) + l o g ( a / b )  
K =  

b = l - a .  

To find explicit values for the dimensions we choose arbitrarily 

a =2 b=' 5 5 A = A  -1 
D b - 5  

so that 

(1 - K )  l O g ( l - K ) + K  log K 

log 3 f ( a ) =  

By a Legendre transformation 

( 1 - 4 )  Dq = qa, -f (a,) 
with 

(40) 

a'? = ala,(*),a.=. (42) 
we get the nenyi  dimensions: using the specified special parameters we can de!ermifie 
from (40)-(42) the dimensions 

D-, = 1.4434 Do = 1.4307 D, = 1.4063. 

To compare experimental results to these values we applied the box procedure to the 
attractor of the generalized Baker's map. Figures ] ( a ,  6, c )  show typical plots one gets 
by this algorithm. It is clearly seen that the data scatter more or less around a trend. 
It is a known characteristic of this procedure that for small S the points are closer at 
the trend than for larger S. The error bars mark the measured points +Axq where the 
standard deviation is obtained using (26). This equation applied to the usual box 
algorithm obviously underestimates the existing errors. Indeed it describes a variation 
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Figure 1. Analysis of the generalized Baker's map 
bytheordinaryboxalgorithmwith q = O ( a ) ,  q = 2  
( b )  and q = - 1  ( e ) .  'Illhe very small error bars in 
plots ( a )  and ( b )  mark the measured points plus 
or minus the calculated standard deviation. 

5 

- 8  -6 -4  - 2  
logi61 

of the time series but in the used algorithm there is another degree of freedom: the 
translation of the used lattice which causes a variation of the pi. In table 1 both 
variations (due to finite length of the used-time series and to the translation of the 
lattice used) are summarized at different box sizes. The calculated variance is similar 
to that which we get by varying the time series but it is significantly different from that 
caused by the translation of the lattice. 

The variability of,yq due to the lattice translation is a consequence of the renunci- 
ation of the optimization in (3) and (4) which cannot be realized in numerical 
evaluations from time series. But it is possible to reduce the variability by optimizing 
the box algorithm. A procedure that is capable of reducing the fluctuations especially 
for large 6 will be described in the next section. 

6. The modified algorithm 

In the partition function formalism, covers are regarded that consist of sets with 
aribtrary small diameters 1,. There is no sense in doing so if we model the attractor by 
a finite number of points. This, in both the ordinary and the modified box algorithm 
(om, MEA),  is handled by regarding covers consisting of sets of equal diameters 
1. = 1(=6) .  In the OBA those are square boxes out of a lattice and no optimization such 
as in (3) and (4) is performed. In order to improve the estimation of the xu, the MBA 

starts with a larger family (which we call the prime cover) which contains all circles 
centred in a point out of the time series with diameter 6. For relevant S these sets are 
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Table 1. Here at some valucs of S the calculated standard deviation is compared with that 
from the variation of the time series and that from random translation of the lattice. 6 
denotes the box sire, Ax:  the standard deviation of x q  from random translation of the 
box lattice, Ax:= the mean of the calculated standard deviation at random translation. Ax: 
the standard deviation from variation of the time series and Ax:< the mean of calculated 
standard deviations at variation of the time series. Note that at q = - I  the calculated 
standard deviations are just upper limits. 

113 20.35 7.194 0.3740 4.900 
114 239.9 24.55 0.3609 16.74 
116 308.9 32.75 1.975 26.10 
118 1583 91.70 7.123 70.28 
1/12 1112 82.04 6.813 69.54 

113 0.2421 0.0000 0.0000 0.0000 
1/4 0.4227 0.0000 0.0000 0.0000 
1/6 0.4285 0.0000 0.0000 0.0000 
118 0.9682 0.0000 0.0000 0.0000 
1/12 0.6960 o.ow0 0.0000 0.0000 

s A ~ : X I O '  A X ~ X I O '  A X ? ~ X ~ O ~  

113 129.6 14.31 11.68 141.0 
114 25.73 5.277 2.954 5.266 
1/6 17.97 5.390 3.612 5.602 
118 1.834 1.435 0.469 1.445 
1/12 2.616 1.400 0.640 1.430 

clearly not disjoint and we have to build a subfamily of the prime cover which still is 
a cover of the attractor and we have to make the sets in it disjoint by subtracting each 
intersection of several used circles from all but one of them. Simultaneously we want 

are dominated by  the fullest boxes (or even the fullest box) and in order to perform 
the optimization of the x4 we first want the fullest of the used boxes to be as full as 
possible, then the second fullest to be as full as possible and so on. For q < 0 the x q  
are dominated by the emptiest box(es) and to perform the minimization of x' we want 
the empty boxes to be as full as possible. 

!O pdcrfi  a:: optiz-izatia:: Of !he m0me:::c 2ccs:di::g :G (3) a::d (4). Fa: q > 0 :he p 

Table 2. The Rdnyi dimensions measured using the modifred box algorithm together with 
the estimated errors using (14). (45) show for q = 0.2 a good agreement with the calculated 
values. For q = - I  the situation is more complicated. 

Dq, calculated Dq, measured by the 
q from (40)-(42) modified box algorithm 

0 1.4307 1.434 -t 0.009 
2 1.4063 1.413 -t0.008 

-1  1.4434 1.391 10.009 



390 A Bnrth et a/ 

To construct the desired cover we start by choosing the fullest circle out of the 
prime cover, denote the number of points in this circle by k: and, because the sets of 
the desired cover must be disjoint, we delete all points out of the chosen circle from 
the other sets. Now we choose the fullest of the remaining sets (regarding only the 
remaining points, not the deleted ones), denote the number of remaining points in it 
by k: and delete all points in it from the remaining circles. We continue the same way 
until all remaining circles are empty. This way we get a cover C+ of the time series 
consisting of disjoint sets. For q 2 0 we evaluate x q  as 

x q  = 1 (y = n-4 1 ( k y .  (43) 

To evaluate x q  for q < O  we regard circles out of Ct but refill them with all points 
they contained in the prime cover. We choose the emptiest of those circles, denote the 
number of points in it by icl and deiete aii points in it from the other circies. We 
continue this until no circle out of C+ remains or all remaining circles are empty. The 
x' with q < 0 are evaluated as 

xq = n P  (k : )q .  (44) 

Figure 2 shows typical plots using this modified count algorithm. Here the same 
time series of 30 000 points was analysed at about the same values of S as in figure 1. 
The error bars in the plots in figure 2 mark the measured points plus minus the 
calculated standard deviation and it can be easily seen that there is a region of an 
approximately linear behaviour with an overlaying smooth oscillation which is caused 
by the fact that the self-similarity of the multifractal depends on discrete increasing 

30 

Figure 2. Analysis of the generalized Baker's map 
by the modified box algorithm with q = 0 [ a ) ,  q = 2 
( b )  and q = -1  [c). In all three plots a straight line 
was fitted through the points in the range from 
log o = -6.04 to log 6 = -4 .9  which is &out one 
period of  the oscillation. The measured value of 
Dq, q = O ,  2, -1 is Do=1.434f0.009, Dz= 
1.413i0.008 and D., = 1.391iO.OW. The error is 
determined according to (14) and (45). Using (14) 
and (38) yields AD., = 1.608. 
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factors x', r e N .  The logarithm of x is the wavelength of the oscillation. Figure l (a)  
shows a plot for q = -1  and here (26) seems to yield too great error bars at some 
points. In the power law regime the uncertainty of the points now obviously is very 
small. Nevertheless the oscillation causes an imprecision in the evaluation of the R h y i  
dimension and the existing errors would be underestimated if we used the calculated 
standard deviations by (14) setting Ayj = Axu( $) / ,y ' (S , ) .  We get a more realistic error 
if we assume the Ay(log 4) to be equal and estimate them as 

withf(log 8 )  as the fitted line. To avoid additional errors the fitted region length must 
be an integer multiple of the oscillation period. Our fits in figure 2 use about one 
period of oscillation and for q = 0 and q = 2 the errors are well estimated while for 
q = -1 the error we get by (14) using (45) is too small (factor > 5 ) ;  on the other hand 
the error by (14) using (38) is too great (factor =SO). The whole region of approximate 
power law scaling is only a little longer than used for our fits and shifting the fit range 
more lo the left or more to the right rapidly decreases the measured values of Dq. 

7. Dixussioo 

In sections 3 and 4 formulas are derived which describe the statistical error of x q  due 
to the finite number of points in a time series. This error is expressed in terms of the 
pi which we only know from the analysis whose error we want to describe. Therefore 
we can only make use of (26) if there are many filled boxes and if each of them 
contains many points. Tnis is satisfied in a certain range which fortunaieiy is about 
the same where the power law behaviour is fulfilled. Here the error bars due to (26) 
can be a good estimation to fix the borders and check the quality of the linear region 
in the log &log x' plot. They also allow us to identify runaway points which sometimes 
occur in the modified algorithm. Then the R6nyi dimensions can be measured with a 
precision that is for positive q well estimated by (14) using (45). 
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